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Abstract
[nstitntions formalize the intnirive notion of logical system. inclnding both synrax and seman-
ties. A surprising mwumber of ditferent notions of morphism have been snuggested for forming
categories wirh institutions as objects, and a surprising variety of names have been proposed for
them. One goal of this paper is to suggest a terminology that is both uniform and informarive
to replace the current rather chaotic nomenclature. Another goal is to investigate the properties
and interrelations of these notions. Following brief expositions of indexed categories. twisted
relations. and Kan extensions. we demonstrate and then exploit the duality between institution
morphisms in the original sense of Goguen and Burstall, and the “plain maps™ of Meseguer. ob-
taining simple uniform proofs of completeness and cocompleteness for both resulting categories:
hecause of this duality, we prefer the name “comorphism™ over “plain map.” We next consider
“theoroidal™ morphisms and comorphisms. which generalize signatures to theories. finding that
the “maps™ of Mesegner are theoroidal comorphisims. while theoroidal morphisms are a new
and “semi-natural” morphisms. and appendices discnss

concept. We then introduce “forward
institnrions for hidden algebra. universal algebra. partial equational logic. and a variant of order

sorted algehra supporting partialiry.

1 Introduction

Many different logics arve used in computer sciencel” including {mary variants of) Hrst orderD higher
orderI’ Hornt clausel tvpe theoreticl equationall” temporall modall’ and infinitary logics.  To cap-
ture the fact that many general results about logics do not depend on the particular logic chosenl
Goguen and Burstall {29] developed institutionsT formalizing the notion of a logical system with
varying non-logical symbols (sets of such symbols are traditionally called ~signatures™ in this field).
The main ingredient of an institution is a satisfaction relation between its models and its sentencesl’
an abstract form of Tarski's classic semantic definition of truth [T0]land the main requirement is
that this relation should be consistent with respect to signature morphismsI’ whid intuitively means
that satisfaction is invariant under change of notation. The formalization only assumes abstract
categories (or classes) of signaturesI” semences and modelsI’ without assuming ayy particular struc-
ture for them; the covariance of sentences and contravariance of models under signature morphisms
is captured by appropriate functors.

Many papers have been written on institutions[ both theoretical and appliedl'in the twenty
years since the earliest formulation [5T 6]: for examplel" institutions ha been used to study lambda
calculusT second order logicT and magn variants of equational logicI' modal logicl’ higher order logicl'
and first order logic. The main original paper on institutions [29] already contains several significant
resultsT including a mmber of equivalent definitions for institutions’ cocompleteness for categories of
theoriesI” colimit preseration for the functor on theories induced by a signature morphismI” a theory
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of constraints (including freeness and seneration constraintst among othersysewal wavs of bailding
new institutions frone old M and deduction as semence morphisms (see the diseussion after Definition
LU despite an apparesly common belief that institutions do not handle deduction. Among other
exivnplesD Mosses showed that his nuitied aleebra is an institution ATICGognen showed that (his
original version of) hidden algebra is an institution (251 Ry gave an institution for order sorted
logic [52]and Mossakowski gave o hierarchy of institntions for totall partial and order sorted
logics [151. Oune tmportant application of institutions is a uniforn approach to modnlarizition
for specitications: in tactl this was amajor motivation (50270 29]: wmong many papers on this
topiclwe mention [I3033] and [56]0 which all add inelnsion systems to institutions. Much other
interesting work with fustitutions hias been done by Tarlecki (620630640 650 6710 Sannclla and
Tarlecki [530 590 6010 Cevioli 710 Mossadski (45]7 and Diaconeseu 190 14U 150 among others: [67]
in particular is an important paper with goals and results similar to those of this paper. Burstall
aud Diaconesen (4] generalize “hiding” from algebra to an arbitrary institutionl and apply this to
both many sorted and order sorted algebra.

Many variations on the institution concept have appeared. For examplel Mayvoh introduced
“galleries™ [42]F which Gognen and Burstall extended to “generalized institutions” [28 T allowing
non-Boolean valnes for satisfaction. Poigné’s “foundations™ and -rich institntions™ [30] further ab-
stracted institutions by requiring that sentences form a ibrationl although this gets ery complex
Fiadeiro and Sernadas [23] introduced “m-institutions™ and Meseguer [43] studied “general logicsI™
each combining institutions with classical entailment relations: [43] is a gem that contains many
interesting ideas. Salibra and Scollo introdineed “pre-institutions™ 37T where the “iff™ in the satis-
faction condition is split into two tmplicationsT whik are then studied separatelyT conbined T or both
dropped: Ehrigl Orejaset al. introduced “specification logics™ [22]T whib are indexed categories of
uodelsCwith no sentences: Cizinesen introduced “truth svstems” [11]Ta sort of compromise be-
tween institutions and chartersI” allowing inference in a designated model: and Pawlowski introduced
“context institutions™ [49] to deal with variable contexts and snbstitutions. Diaconesen introduced
“many sorted institutions”™ [19]T which assign a sort set to each signature[and Grothendieck (or
fibred) institutions {20]I" which combine multiple institntions in a single structure: the iatter was
developed for the semantics of the CafeOB. language [21]. Section 3 of this paper introdices the
“close variants™ of the institution conceptl” whih share its mathematical properties.

Although the variants of institution all have interesting propertiesI and are no donubt worth
studyingl[some can be seen as special kinds of institution®Cand the others have close natural
relatlonshlpa to institutions. It seems to us that the original institution concept captures the essence
of logical systemI" whia is the intimate dance between syntax and semanticsU including deduction.

e feel that most structures that weaken the institution definition are somehow pathological®.
There are tendencies both to focus on syntax at the expense of semanticsI' and on semanics at the
expense of syntax; the first occurs especially in intuitionistic logic and type theoryl’ while the second
is more common in computer science. This paper treats institutions in the original sensel” believing
that most concepts and results are easily adapted to the variaut notions. (However[ the notions
of charter and parchment [28] formalize genuinely different notionsTthough still closely related to
institutions.)

Over the last fifteen yearsD there have been even more variations on institution morphisms
than on institutionsCeven discounting those that are adaptations of morphism concepts to other
institution-like formalisms; morcoverl’ these notions hae been given many different namesT includ-

JE.g., [28] shows that the “7-institutions” of [23] are really institutions.
*For example, the main example used to motivate the “pre-institutions” of [37] is an unnatural version of hidden

algebra where the morphisms fail to preserve all the relevant structure.

to



e morplisimUmapUapping Ceodinglencoding Uvepresentation U representation mapl embedding [
simnlationtransformationUand morelmost of which do little or nothing to sneeest their nature,

This paper tries to bring ~some order to this chiaos by exploring their properties and relationships
and by introdncing names that snggest their meaning. Goguen and Barstall inteodnced  “mor-

phisims™ [29]0 which are perhaps the most nakneal [l sinee they include strnctnee foreetting (and

hence embedding or representation): bat hecanse institution worphiss in this sense do not cap-

ture all the important velationshipsU researfiers have introduced many variants. Pechiaps the most

important of these is dual to institution morphismsC inrodiced by Meseguer (B3] nndder the nae

“pladn map:” this was luter renauned “representation™ by Tarklecki 67] and “plain representation™

by Mossakowski [45; T but becinse of the dualityl we prefer the name comorphism.  Cerioli intro-

duced the special case of “simnlations™ [7]0 Rrlecki introdineed “codings” [66]0 a turther wakeningD
and Mesegnuer introduced “simple institntion maps™ [43]0 whid generalize comorphisis by mapping

stgnatures to theories: some variationsD including “conjunctie maps™ which take a sentence to a set

of sentencesD were studied by Mossakowski (43]T who with Kreovski also introduced “embeddings of
institutions™ [38][ to formalize equinlence of logical frameworks: Sannella and Tarlecki introduced

“semi-morphisms™ [61T 67]T whitonly have modelsT for relating specification and implemenation

langnagesD and Salibra and Scollo inroduced “transformations™ [3717 whih map models to sets of
models. Diaconescu introduced “extra theory morphisms” [15] for the semantics of multiparadigm

languages like CafeOBJ [16]. It is very helpful to look at examples to gain an understanding of this

rocky terrainl and w shall often do so.

We had originally hoped to snrvey and systematize all the distinet notions of morphisin for
istitntions in the original sensel bt we fonnd even this limired goal impractical it less than
monograph length: however['we do hope to have covered the most important notions. Section 2
gives brief expositions of indexed categoriesI” wisted relationsD and Kan extensionsD follwed in Sec-
tion 3 by several equivalent definitions for institutions and their close variantsI especially as functors
trom signatures to twisted relations: a subsection considers “inclusive institntionsI™ whid are in-
stitutions with inclusions. The functor formulations allow easy proofs in Section 4 for copleteness
and cocompleteness resnlts: we also advauce the hypothesis that morphisms are in general more
natural than comorphisms. Section 5 considers “theoroidal™ morphisms and comorphisimsTwhich
generalize from signature morphisins to theory morphisms: what we call theoroidal comorphisms
were introduced by Meseguerl while theoroidal morphisms appear to be a new concept. Section 6
introduces the new notion of forward morphismI while Section 7 considers semi-natural morphisms
and comorphismsI which weaken morphisms by removing one naturality condition. A summary
‘of the paper appears in Section 8l'along with a list of some open problems. Appendices A and
B discuss partial equational logicT'a variant of order sorted algebra that supports partialityl'their
corresponding institutionsI'and an appropriate morphism between them: Appendix C gives two
institutions for hidden algebral' and Appendix D inroduces a new abstract institution for universal
algebra. The institutions in these appendicesI which draw on the authors’ prior work on more
concrete applications” are used in examples in the body of this paper.

Dedication This paper is dedicated['most warmly and respectfullyT to Prof. Rod Burstall on
the occasion of his retirement from the University of Edinburgh. Rod was the cofounder of the
institution of institutions and has always been an enthusiastic supporter of its further development.
He is also a very close and very dear friend'and one of the most insightfullkind and intelligent
people we have ever known. We salute his very distinguished pastD and we wish him every success

and happiness in his future.



2  Preliminaries

We sssume the veader funiline with bisic eategorical conceptslinehuding initsUeolimitsD funetor
categoriesUand adjoints. We use semicolon for worphisin compositionwritten i diagrammatic
ordert that sl if 0 4 = B and g1 B — " ave morphismsD thenf:g: A4 = (' is their cottposition.
We let Clah) denote the morphisins o — b ina category CU aned w Lot |C| denote the objects of
C: also we use 7 for vertical composition of natnral transformations and =2° for their horizontal
composition. The reader is assumed Funiliar with the tact that Cat (and thus also Cat™) and Set
are both complete and cocomplete [H0].

2.1 Indexed Categories

[ustitutionsCwith their variation of syntax and semantics over signatires of non-logical symbols[
are an instance of a general categorical notion capturing structures that vary over other structures.
Let Ind be any categoryl'with objects called indices.

Definition 1 An indexed category is a functor C: Ind” — Cat: when i € |Ind|l we may
write C; for C'(1). Given an indexed category CT thenFlat(C) is the category having pairs (. a) as
objectsI” wherer is an object in Ind and « is an object in C,I" and haing pairs (. f): (i.a) = (I'.d))

as morphismsI’ wherear € Ind(i. ') and f € Ci(a. Cp(u')). ]

The following gives suficient conditions for the flattening of an indexed category to be complete
or cocomplete [69]:
Theorem 2 If C': Ind” — Cat is an indered category. then:
Lo If Ind s complete. if C, is complete for each i € {Ind|. and if C, : C; — C, s continuous
for each o2 i — j. then Flat(C') is complete.
2. Mf Ind is cocomplete. if C, is cocomplete for each i € |Ind!. and if Cy: Cy, = C, hus aleft
adjoint for each vz i — j. then Flat(C') is cocomplete.

Given an indexed category C: Ind” — Catldefine the indexed category ¢ : Ind®® — Cat
by C™ is (C,)°P and C2: CP = CPis (Co) for a € Ind(i.j). The following is direct from
Theolcm 20 but is vorth statmo e‘{phutlv because it is s0 easy to become confused by the dualities

involved:

Corollary 3 If C: Ind”®” — Cat is an indered category, then:

L. IfInd is complete. if C, is cocomplete for each i € |Ind). and if C, : C; — C, is cocontinuous
for each a: i — j, then Flat(CP) is complete.

2. If Ind is cocomplete, if C, is complete for each i € |Ind|. and if C., Cj = C, has a right
adjoint for each a: i — j. then Flat(C°P) is cocomplete.

2.2 Functor Categories and Kan Extensions

Given categories T and STlet TS denote the category of functors from S to T having natural

transformations as morphismsCand for any functor : S — STlet T?: TS = TS denote the

functor defined by T®(I') = &; I for a functor I': §' — TTand by T?®(0) = 14 ; o for a natural

transformation o: I' = J'Twhere I'J': 8 — T are functors. Also let T—: Cat® — Cat

denote the functor that takes a category S to TS and a functor : S — S' to T®. Note that
: Cat — Cat is an indexed category for any category T.



Proposition 4 {f T s complete (cocomplete) then TS i complete {cocomplicte) for any category
S und T is continuwons {eocontinnons) for uny functor & 8§ = §'.

Proof:  [int: Limits (coliwmits) in TS wwe built “poiutwise”™ [HOJC p. 112, a

Definition 5 Given functors : S — S and [ S — TCa right Kan extension of /[ along
@ is a pair containing a functor [7: S — T and a natucal transformation p: &: 7 = [ which is
universad from TP to IT that isC for ey J': S’ — T and g B = 1 othere is oo unigie natural
transformation 7: J" = [" snch that ;1 = (1p 3 0): . Duallyla left Kan extension of [ along
D is a functor 70 8" — T and a natural transformation ;[ = &: [ which is universal from [
to TP that isClor every J': 8" = T and i/: [ = b:.J there is a unique nataral transtormation
a: ["= J such that 1 = j:(lg 30). [ ]

The rest of this section contains general categorical results that are used later in the paper; the
first may be found in [40].

Proposition 6 Given a small category S. then:
1. If T is complete then uny functor [ S — T has a right Kan ectension along any : S — S’
and T has a right adjoint.

2. Af T is cocomplete then any functor I S — T has a left Kan extension along any ®: S = S’
ard T has a left adjoint.

Theorem 7 T~ contravariantly lifts adjoints to functor category adjoints.

Proof: Hint: If (6. ®.5.¢): S — S is an adjoint (with & a left adjoint to ®) then so is
(T'P'.T‘b.T".T‘) : TS — TST where ), =31y and (T¢); = €3 1; for all functors 7: S =T
and I': § = T. a

Then using the same notationI’ ve have:

Corollary 8 Nat(®:I'. 1) >~ Nat(I'.®': ). naturally in both I and I'. More precisely. w natural
transformation p: ®: 1" = I qoes to (53 1p):(le 3 ) and conversely. a natural transformation
e I'= @1 goes to (1g s u'):(e31)).

.2.3 Twisted Relations

Twisted relations were introduced in [29] and further explored in [54]:

Definition 9 Let Trel be the category of twisted relationsl” with triples(4. R. B) as its objectsI’
where A is a category['B is a set and R C |4] x BI' and with pairs(F,¢): (A.R.B) = (4. R'. B')
as its morphismsI” whereF': A" — A is a functor and g: B — B’ is a function such that the diagram

Al —=—B
1]
|| —— B’

commutes[’ in the sense that for ary a’ € |A'] and b € BT v have a'R'g(b) iff F(a')Rb. [ ]



There e four nataral viiants of this detinition awising from the four choices of one of sets or
categories for the left and right components of the triples: let us eall these the original variantsD
stuce they alveidy appeir in [29] Those variants where the vight component is categorv-valied give
vise to institutions that allow deductionl whereis those where the left componen is categoryv-vadned
give vise to institutions that allow morphisims of models (see the diseussion after Detinition ). It
15 ot hard to see that the following holds for all four of the original vaviantsD generalizing the proof

given in [51):

Proposition 10 Trel ts both complete amd cocomplete.

3 Institutions

Here finally is the main basic concept of this paper:

Definition 11 Aninstitution ] = (Sign. Mod. Sen. =) consists of a category Sign whose objects
are called signaturesla functor Mod: Sign — Cat giving for each signature T a category of
E-modelsTa functor Sen: Sign — Set giving for each signature a set of S-sentencesl and a

T-indexed relation = = {Ec | T € Sign} with Ee C [Mod(Z)| x Sen(X)Isuch that for any

signature morphism »2: £ — ST the follwing diagram commutesD’

s Mod T} — = Sen(%)
: )

- Modi . ‘ Sen: .
| !

A [Modi T o Sen(%’)

that is[ the tollwing satisfaction condition

m' E=v Sen(,)if) if Mod(p)(m') Ex f

holds for all m” € [Mod(Z')| and f € Sen(T). ]
We often write only ¢ instead of Sen(.) and -I» instead of Mod{y): the functor .| is called

the reduct functor associated to . With this notationl the satisfaction condition becomes

m' Eo ¢(f) if m, ke f.

We also use the satisfaction notation with a set of sentences F on its right sidelletting m = F
mean that m satisfies each sentence in FT and further extend this notation by letting F =< F’
mean that m s F' for any Z-model m with m k=x F. We may omit the subscript £ in == when
it can be inferred from context. The closure of a set of E-sentences FT' denoted F*T is the set of all
f in Sen(Z) such that F =g f. The sentences in F* are often called the theorems of F. Closure
is obviously a closure operatorl i.e.T it is extensal’ monotonic and idempoten.

There are four natural variants of the definition of institutionarising from choosing one of
Cat or Set for the targets of the functors Sen and Modl being sure that the target of Mod
is dualized['to remain contravariant; since these already appear in [29]F we again call them the
original variants. The two variants where Sen is Cat-valued allow deduction via morphisms
among sentences (as advocated for example by Lambek and {Phil) Scott [39]) with conjunction
appearing as categorical product. In case the category is a partially ordered setI'its morphisms
can represent an entailment relation; let us call this an entailment variant. Let us write f Fg f’



when there is acmorphisi in Sen(S) fromn £ 1o [

Y Bat thers is no reason o restrict to sieh

vivriantss we could imstead nse nndticategories as advocated by Meseguer [13] with their forgetful

frnctor to setsl or ay other approprinte such strnctueel allwing proofs to be represented. Notice
that the notation [ = 7 still inakes sense for non-entaihnent vaciotsU although it elides the specific
prool. Twisted velitious are easily adapted to sneh variantsUias are Proposition 10 and the Later
completeness vesults that huild upon it. We will informally call thesel” and ary other variants that
arise just by substituting other appropriate fuctors into the twisted category detinition] theclose

variants of the institution conceptD hecanse technically they proceed in the same way.

A yet

more categorical definition of institation is given in [29]0 taking rhe target categories to he comma

categories constriucted to be twisted relation categories: general properties of comma categories

then replace argmments about twisted relitions.

Example 12 We briefly discnss sowme institutions that are especially relevant to this paper.

l.

~1

Classical unsorted equational logicl the institution of which we denote ELIL goes back to
Birkhoff [2]: it is the one sorted special case of the many sorted equational logic discussed in
the next item.

Many sorted equational logicTthe institution of which we denote MEFLT was first shown to
he an institution in early drafts of [29]. Here signatures and algebras are the usual overloaded
many sorted signatures and algebras (but we do allow empty carriers)T which go back to
Goguen [24]: sentences are explicitly nniversally quantified pairs of termsT and satisfaction is
defined in the obvious way. Proving the satisfaction condition does take a bit of work (see
2971T but as with wary other exaunplesT this can be alleviated ly using charters [28,

Orvder sorted equational logicl the institution for which we denote TSELID has overloaded
order sorted signatures and algebrasUwith explicitly universally quantified pairs of terins as
sentences and with the olvious satisfaction: see e.g. {30] for details. The first proof that this
is an institution was probably given by Han Yan [T1] for a case that also included so called
sort constraints: see also the proofs in {52} and [45]Tnoting that there are many variants of
order sorted algebra [30].

Among the many varianes of first order logicl we first mention the one with many sorted
function and predicate symbols in its signaturel’ plus of course the usual logical synbols and
the models (though we allow empty carriers): let MSROL denote this institutionl” and letZ0L
denote its unsorted variant; proofs for their satisfaction conditions are sketched in [29].
Many sorted first order logic with equalityl’ denotedMSFOLEC enriches MSFOL by allowing
equations as atomsI rather than just predicates: a proof that this forms an institution is
sketched in [29]. The unsorted special case is denoted FOLE.

Many sorted Horn clause logic is the same as MSFOL except that only Horn clauses are
allowed as sentences: let us denote this institution MSHCLT its unsorted variant by HCLT its
variant with equations as additional atoms MSHCLETD and its unsorted ariant with equations
as atoms HCLE: proof sketches again may be found in [29].

Partial equational logicl denotedPELTis discussed in Appendix A.

Supersorted order sorted equational logicl denotedOSEL T is discussed in Appendix B.

Two hidden equational logicsT denotedHEL; and HEL»T are discussed in Appendix C.

Of course there are many many other examplesI some of whib have a very different character. B



3.1 Some Basics of Institutions

We review some basies from [29]:

Proposition 13 For any morphesm o 8 — 8 and sets ECF of S-sentinees:
L. Closure Lemma: @ F®) 2 o F)°:
2GR = ol F):
g (FCUF) = (FUF).

Definition 14 A specification or presentation is a pair (. F) where E is a signature and £ s

a set of S-sentences. A specification morphism from (S0 F) to (£ F7) is a signature morphism
0 8 5 T osuch that o F) € F'. Specifications and specification morphisms give a category
¥ ¥ = | A
denoted Spec. A theory (T, F) is a specification with £ = F*: the full subcategory of theories in

Spec is denoted Th. [ ]

The inclusion functor & : Th — Spec is an equivalence of categoriesI" having a left-adjoint-
left-inverse F : Spec — ThI'given by F(Z. F) = (Z. F*) on objects and identity on morphisms:
note that F is also a right adjoint of UTso that Th is a reflective and coreflective subcategory of
Spec. It is also known [29] that Th is cocomplete whenever Sign is cocompletel” and thatTh has
pushouts whenever Sign does. The following construction for pushouts in Th is a special case of
the general colimit creation result proved in [29]:

Proposition 15 For theory morphisms o1 (S.F) = (S F) and 2o (SF) — ol Fonl of
v } 1 ( *

is « pushont in Sign. then

is a pushout in Th, where F' = (¢’ (F1) U ¢'2(F2))".

Definition 16 A theory morphism ¢: (2. F) — (&', F') is conservative iff for any (Z. F)-model
m there is some (Z'. F’)-model ' such that m'{,= m. A signature morphism ¢: & — T’ is
conservative iff it is conservative as a morphism of void theoriesI" i.e.p: (Z.0%) — (Z". o). o
The following is not difficult to prove (see [56]):
Proposition 17 Given p: £ - L', f € Sen(X) and F C Sen(I), then:
1. F g f implies o(F) o o(f).
2. If ¢ i3 conservative, then F E=x f iff o(F) Eo ¢(f).



The wext vesult texplicit iu [54]) for the notion of mstitution in Definition: LT and implicit in
[200} savs that an institation over acategory of signatnres Sign can be regarded as a finctor with
tareet. Trell and rroe versa; this adso holds for the close variants of the institution and twisted
celation concepts (when they are appropriately correlated). Theorenr 26 exteuds this result from

objects to morphisms and comorphisms.

Proposition 18 There is a hijection (e w one-to-one correspondence bietween clusses] betuween
institulions over Sign and functors Sign — Trel.

Every institntion (Sign. Mod. Sen. &) has an associated functor Sign — Trel taking a signature
T = |Sign| to the triple (Mod(Z). Ex. Sen(T))Cand taking a signature morphism 0 £ — ¥ to
the “twisted” morphism (Mod{ 2). Sen( ;. and moreoverCevery functor [0 Sign — Trel has an
associated institution (Sign. Mod. Sen. =) snch that it [(Z) = (Ac. Re. Be [ thenMod( X} = A<l
Sen(L) = Bc and == R and sud that for a signature morphism o: ¥ — ST ifliy) = (F..q.T
then Mod(p) = F. and Sen(y) = ¢.. Therefore we can use the tuple and functor notations
interchangeably for institutions.

An institution where the Sen functor is category-valued is said to be complete iff for any two

fref M flEcf

We can define compactness in the same stylel’ prorided Sen(Z) has snitable extra structnrel” sub as
that of an infinitary mudticategory?®: an institution is compact iff whenever f e fthen fy =< f

T-sentences f. f'T v have

for some fuite fy T f.

3.2 Inclusive Institutions

In many categoriesI among the monics are some especially simple and natural maps which may
be called inclusions. Although many professional category theorists are loathe to consider theml
becanse of their desire to identify things that are isomorphicl inclusions are in fact a natural conceptl
the use of which can greatly simplify some applicationsCespecially where syntax is the object of
study. For examplel ve really do prefer a subsignature to be given by an inclusionl” so that the exact
same symbols are involved; and the same holds for modules in both programming and specification.
At the end of [29]T axiomatizing and then exploiting inclusions for modnlarization was listed among
the open problems. A first solution was given in [13] with the formal notion of inclusion systeml
which was then used to significantly simplify the semantics of module systems over an institution.
The abstract notion of inclusion system was further studied and simplified in a series of papers
[37T 120 13T 53Here we briefly summarize the current statel’ and sktch some applications.

There is a well-known correspondence between certain small categories and partially ordered
setsI” orposets for short; these categories have exactly one object A for each element a in the setl
a morphism from A to B iff a < bT and they satisfy asi-symumetryl’ in thatif there is a morphism
from A4 to B and another from B to A then A = B; hereafterl' we will identify posets with their
corresponding categories. Sums and products correspond to unions and intersectionsl’ respectielyl’
and a poset with finite sums and products is a latticel' with all the usual properties thereof. Of
coursel'things generalizes from sets to classesTwhich we will call poclasses; we let — denote the

poclass morphisms.

3\While an ordinary multicategory has finite lists as objects, our notion of infinitary multicategory is a monoidal
category with arbitrary subsets of a given infinite set as its objects, and with union as its multiplication: we hope to
develop this notion, which in this form only works for entailment variants, in more detail at some later time.



Definition 19 Au inclusive category C is a category with o broad sibeategory® I which is a
poclasslUcalled its subcategory of inclusionsU hawing tinite intersections and nniousUsneh that
for every pair of objects AU BT theiv nnion in I is a0 pushont in C of their intersection in I, C
is distributive itf 7 is «istributive. A finctor between two inclusive categories is an inclusive
functor (or preserves inclusions) iff it takes inclustons in the source category ro inclusions in

the tauset category.

This notion of nclusion is similar to that of (weak) inclusion systems [ISC3TC 2013053 Cexcept
that no factorization properties are assnmed: however[ the weaker notion is adeqguate for many
prurposes. Alsol sums and products are not ueeded for mary applications. Tnelusive categories can
playv a similar role to factorization systems (360 48T but tend to lwe smoother proofs.

The following enriches an institution with inclusions {56]:

Definition 20 An inclusive institution is an institution with its category of signatures and its
Sen finctor both inclusive. It is distributive iff its category of signatures is distributivel’ andis
semiexact iff the functor Mod: Sign — Cat”? preserves the pushonts’T i.e.it takes pushouts in
Sign to pullbacks in Cat. n

The term semiexactness was introduced in [18] as a weakening of eractness whid says that Mod
preserves general colimits: exactness seems to have first appeared in [60]0 and vas used by Tarlecki
[63] on abstract algebraic institntions and by Meseguer [43] on general logics.  Althongh many
sorted logies tend to be exactTtheir unsorted variants tend to be only semiexact.

The category of rtheoriesTU'ThIT inherits mary properties from Sign. One of the most imporrant
of these is that Th is cocomplete if Sign is. Moreover[

Proposition 21 For an inclusive institution:

1. Th is inclusive: und
2. Th has pushouts that preseree inclusions If Sign has pushouts that preserve inclustons.

It is often more convenient to speak of a theory extension instead of a theory inclusion

Inspired by Goguen and Tracz's “implementation oriented™ (i.e.l'more concrete} semantics for
modnlarization (33] I Rogu [56] introduced the notion of module specification as a generalization
of a standard specification having both public (or visible) and private symbols via inclisions of
signatures” and then explored their properties and gave semantics for module composition over an
arbitary inclusive institution. More preciselyl’ a module specification in an inclusie institution is a
triple (. F.Z')[" where £ — T and F is a set of E-sentences. The visible theorems (or the visible
consequences) of a module (. F.T') are the Z'-sentences satisfied by F over ETand a model of
(E.F. ) is a &'-model of its visible consequences.

For another applicationlinclusive institutions are an attractive alternative to Mossakowski's
“institutions with symbols™ [46]T which assign a set of symbols to each signaturelas part of a se-
mantics for the CASL language [10]T since inclusions will automatically kep track of shared symbols
in subsignaturesI’while allowing all the usual operations on modulesTincluding renamingl'to be
{more) easily and naturally expressed. It is our view that inclusive institutions provide the most
natural and easy way to formulate the semantics of specification languages like casL [10] CafeOBJ
(16] and BOBJ [31].

SIn the seuse that it has the same objects as C.
"Actually, we are interested only in pushouts of inclusions, but we wish to avoid introducing a new concept.

10



4 Institution Morphisms and Comorphisms

Perhaps the two hest known kinds of imarphisin hetween institutions are the original “morphisins”
of Gognen and Boestall 291 and the “plain maps™ of Meseguer (137 ater given the bhetter name
“represeutations” by Tarlecki (670 66]. We show anatneal duadity hetween thesel b viewing their
categories with institntions as objects as Hattened indexed categories: this motivides onr preference
for the institntion comorphisim terminologyl and also yields easy proofs of completeness and cocomn-
pletenessT nsing the fact that givn o functor between signature eategoriosD ary institition over the
souree signatnre category extends to an institution over the tarcet signature category adong thit
functor in two canonical waysD givn by the left and right Kan extensions. Arrais and Fiadeiro [41]
showed that given an adjnnetion hetween signatnre categoriesCan institution morphisi gives rise
to an institntion comorplism and vice rersa. We show that this result is a natural consequence of
the fact that an adjoint between signature categories lifts contravariantly to functor categories,

The original morphisms for institutions introduced with the institution concept in [29] seem to
be the most natural notion. In particnlarCthey include structure forgettingland hence structure
embedding or representation relationships. Qur examples will show that morphic formulations are
usually simpler and more natural in other contexts as well.

Definition 22 Given institutions I = (Sign. Mod. Sen. =) and I’ = (Sign’. Mod’'. Sen’. =")an
institution morphism from I to I’ consists of a functor ®: Sign —+ Sign'Ta natural transfor-
mation .J: Mod = ®:Mod'Tand a natural transformation «: ®:Sen’ = SenI'such that the

following satisfaction condition holds for each £ € {Sign|T'm € [Mod(Z)! and f' < Sent®1 )T

mEcas(fr M Selm) }:.Ip(g f

We let ZVS denote the category of institutions with institution morphisms.

Note that the functor ¢ on signatures aud the natural transformation .3 on models go in the same
direction in this definitionl’ while the natural transformationa goes in the opposite direction.

Meseguer (43] introdnced a dual of the institution morphisms of Goguen and Burstall under
the name “plain mapl’™ later renamed “represenation”™ by Tarlecki [67T 68]: hovever[ w prefer the
name comorphism” in order to emphasize the important duality between these concepts.

Definition 23 Given institutions I = (Sign. Mod. Sen. k=) and I’ = (Sign’. Mod’. Sen’. =")Tan
institution comorphism from I to [’ consists of ®: Sign — Sign'[a natural transformation
‘3: ®;Mod' = Modrland a natural transformation «: Sen = &;Sen'T'such that the following
(co-)satisfaction condition holds for each T € |Sign|I'm’ € |[Mod'(®(Z))|I" andf € Sen(Z’)T

Be(m) s f iff m' Eyc) as(f) .

We let coZN'S denote the category of institutions and institntion comorphisms.

Cerioli introduced the special case of simulation [T]I’ whib in addition requires that 3 be a surjective
partial natural transformation.

It is characteristic of our subject that the same example can often be presented in more than
one way. For examplel'consider the relationship between the institutions of equational logic and
first order logic with equalityl for simplicity restricted to the unsorted versions. Since signatures
for first order logic with equality are pairs (I1. &) where [T gives the predicate symbols and X gives
the function symbolsI’'we can capture the relationship between the two kinds of signature with a
forgetful functor sending (I1, Z) to LT or with an enbedding functor sending E to (0, ). A perhaps
insufficiently emphasized small insight from category theory is that it is often better to deal with

Il



toreet ful Tunctors than with funetors cotne in the other direction. For exaunplelD the forgetful tunetor
from cronps to sets better expresses the relationship between these two than the free gronp funetor:
and we can see e similive phienomenon in onr livtle exaunple that the torgettul functor avoids the
Cudmittedly rather sndly arbitrariness of introducing the cmpty set. Althongh intaitively we have
an ewbedding of equational signatures into tirst order with equadity signatnresD it is more nataral
to nse the forgetful functor than the cmbedding fanetor. The exaamples helow extend this insight

from signatires to institutions.

Example 24 We give some examples of morphisms and comorphisms tor embeddings.

1. First sotme more details of the embedding of equational logic into first order logic with equal-
itv. Let b denote the forgettul functor which on objects sends (I1L.E) to Sl et Jc he the
forgetful functor sending a (IL Sj-model to the corresponding S-algebral” and lete o send
a S-equation to the same equation viewed as a ([T E)-sentence (which may require adding

quantifiers). It is now easy to check the naturality and satisfaction conditions.

A contrasting case is the embedding of unsorted equational logic into many sorted equational
logicT becanse here there is no natural forgetful functor for the signatures: therefore this is
better seen as a comorphismCwith ® mapping an unsorted signature to the corresponding

13V

one sorted signaturel’ and with the olvious a and ;3.

3. On the other handlif we modify the many sorted egnational logic institution to provide
distinguished elements in its sort sets*Cthen there is a natural forgetful functor from many
sorred signatures to unsorted signaturesD and ve get an instivncion morphism. We encourage
the reader to work ont the details of this as an exercise.

4. Au example similar to the first above (but simpler) is the embedding of Horn clause logic into
tirst order logic. Here the signature categories are the same in the two institutionsI” cousisting
of just indexed sets of predicate symbolsTand & is the identity functor. The two model
categories are also the samel and, g consists of all identity functors (where IT is a signature
of predicate svinbols). FinallyTeach ag is the inclusion of the [I-Horn clauses into the first
order [T-sentences, Since so many of the structures in this example are the samel” there is no
significant difference between nsing this morphism and using the corresponding comorphism
to represent the relationship of the two institutions: moreoverl’ these wo are dual in the sense
of Section 4.1.

5. There is also a comorphisi from equational logic to first order logic with equality. Let ¢’ send
an equational signature ¥ to the first order signature (.0)Tlet o’ send a Z-equation to the
corresponding (£, 0)-sentencel’ and let3’ send a (Z, 0)-model to the corresponding E-algebra.
We will see in Section 4.1 that this comorphism is dual to the morphism of item 1 above in
a very natural way.

There are many more examples of a similar character. In generallit appears that the forgetful
morphism versions are somewhat simpler and more natural than the comorphism versions. |

Example 25 There is an institution comorphism from OSEL” to PEL (these institutions of partial
equational logicD and of supersorted order sorted equational logic” are defined in Appendices A and
B[l which also review the notation from [26] that we use here). Given a supersorted signature
(S.Z) and a partial (§', £')-algebra AT it is natural to extendA’ to an order sorted (8. )-algebra

3This is by no means an unnatural concept. For example, in the OBJ3 system [34], every module has a “principal
sort,” which is needed for computing default views [34]. We can therefore argue that these “pointed sort sets™ are
more natural, at least for many computer science applications. o

12



by adding o special svinbol « called the error element'to the caevier of each supersort <7UPaned
extending all partial operations to total operations having the valne « where they were nndetined
and propagate ervor clements, A disadvantage of this constrnetion is that it does not provide
information abont the origin of errors,

For any supersorted signature (S.8) and pactial (57 7 )-algebra AT let I 0) be the S-sorted
faily given by

LotgeiA e = AL forall 5" € 57 and

209 A e = AL U )} for all 82 S

Then Jc(A") can be given an (5. Z)-algebra strncture as followsD wherea is an operation i v
Lot (A sty ay ) = A tag oy, ) iFay.a, ave all ditferent from the ervor elenment « aund
ALy o) s detined: and
2. (3e(A)) (a1, .oay) = x ifany of ay. ... a, is equal to x or if Al (g onn) is not defined.

We call ;3. (A’) the single error superextension of A'T and it is easily seen thatJc(A") is a strict
S-algebra. As shown in [26]T3¢ can be organized as a functor 3¢ : PAIg(¥’) — OSAlg(Z) which
is left inverse to Us[ and righ adjoint to Us restricted to strict algebras: moreoverl'.3' is a natural
transformation.

Now we can check that (.3, a)l'with o as defined in Appendix Bl and with & the forgetful
fmnctor 22 of Appendix Blis a comorphism OSEL” — PEL. When the signature is clear from
contextT we prefer to write _ for 3¢ and to omit as. Then the satisfaction condition for this

comorphism is axs followsT ford’ € PAIg(Z?) and (v.e) € Sen (SiT
A" Ec(ve) f A =oiye).

This not entirely trivial result is proved in [26].

However[ a simpler relationship beween these institutions is given by an institution morphism
PEL — OSEL that we will now define. Given a many sorted signature (D.A) and a partial
A-algebra ATt is natural to extend A to a snupersorted order sorted signature A” = (D DA
by adding an error supersort d’ for each sort d € DU extendingd to an order sorted (D U D A)-
algebra by adding the error element = to the carrier of each supersort d°T and extending all partial
operations to total operations taking the value » where they were undefined. As abovelerrors are
propagated by these operationsI and information abont the origin of errors is lost.

Given a partial A-algebra AT let3a(A) be the (D U D°)-sorted family given by

1. (Ba(A))g = Aq for all d € DI" and

2. (Ba(A))ar = AgU {x} for alld € D.
Then B3a(A) can be made a A’-algebra by defining (31(A))s(a. ... an) to be A, (a1.....an) when
Ag(ay.....q,) is definedTand » when 4,(a;.....a,) is not definedlfor o € A, We call 35(4) the
single error superextension of AL and it is easy to deck that it is a strict A -algebral’ and that
B2 can be organized as a functor 35 : PAIg(A) — OSAlg(A’) which is left inverse to U, -Tand
right adjoint to U~ restricted to strict algebras; moreover['3 is a natural transformation.

Now we can check that (®.3,a)lwith o as in Appendix Bland with ¢ the functor defined
abovelis a morphism PEL — OSEL’. As abovel'when the signature is clearl’ v may write _~ for
B3 and omit aaT so the satisfaction condition for this institution morphisml™ fod € PAlg(A) and

‘ S (A7 is
(7 ¢) € Sen (A )i A l;-_-;A(-y,e) iff A" F:A" (7!6) .

which is not difficult to check.



Let us now compare the morphisin and the comorphisim. [t s elear from the constrietions
that there ave many similarities. Bat i is also clear that (3 is significantly simpler to constriet
than 70 and that & is simpler than 6. [t also turns ont that the morphism satisfction condition
18 signiticantly casier to check than the comorphisin condition.  All this seems to coufirm our

I [ |

hypothesis about the greater natarality of morphisis over comorphisins”.

The following extends Proposition 1S to morphisms and to comorphisis: of coursel it holds for
all close variantsU and proofs for the case of Definition LU can be tonnd in [54].

Theorem 26 Z.\'S 5 isomorphic to Flat((Trel=)""). amd coIN'S is isomorphic to Flat{Trel—).

Therefore we can use morphisins in Flat(( Trel=)??) instead of institution morphisms whenever this
simplifies the exposition. The intuition behind this isomorphism is that any institntion morphism
(P. 4. as in Definition 22 corresponds to a morphism {®. i) in Flat{(Trel—)??)[

Sign

. !
Sign
where ;: 017" = Tis the natural transformation defined as g = {Jc. ax for each ¥ in Sign.
SimilarlvI[ w can use morphisms in Flat({Trel—) iustead of institution comorphisms whenever
this simplifies the exposition. The intuition is that any institution comorphism /. 3.« as in
Definition 23 corresponds to a morphism (&. i) in Flat(Trel—)T

where po: I = ®;1'is the natural transformation defined by us = (Bc. ac).
The following is now an immediate corollary of Theorem 26T using Theorem 2I" Propositions 10T
4 and 4I" and Corollary 3; of course it holds for all close wriants of institutionsI' and proofs for the

case of Definition 11 can be found in [54].

Corollary 27 IN'S and coIN'S are both complete.

The completeness of IS was first shown by Tarlecki in [63] for the notion of institution in
Definition 11T and the completeness ofcoIN'S was shown by Tarlecki in [68][ again for the notion

of institution in Definition 11.

°On the other hand, it is interesting to note that it is the comorphism that involves the forgetful functor here,
and that the authors only uncovered the morphism recently. Perhaps such phenomena help to explain why much of
the literature seems to prefer comorphisms over morphisms.

14



4.1 Duality of Institution Morphisms and Comorphisms

Arridds sund Fiadeivo HHT observed that an adjoint pair of fiunctors hetwoeen two siguature categories
tednees abijection hetween associated institution morphisms and comorplisms. This nice resnult
follows casily from the fact that the functor Trel— contravariantly hifts adjoint pairs to functor
categories (‘Theorem T)Cviaits Corollary 8 detadls are in (54 tor the case of Detinition UL hut of
course this and evervthing else in this snbsection holds for all ¢lose viiaunts of institntions.

Theoremn 28 [f ¢: Sign — Sign’ has a left wdjoint &' Sign’ — Sign then for uny institn-
teons 1: Sign — Trel and I': Sign’ — Trel there is a bijection between institution marphisms
(boyiy: T = I and institution comorphisms (B gy U = L. Moreorer. this bijection is natural in

T und 1.

The bijection of Corollary 8 takes a natural transformation p: U= o (nyl): (e 30T and its
inverse takes a natural transformation g 1" = &1 to (Le 3 p): (€3 1-)[" wheren and € are the unit
and the counit of the adjunctionl” respectiely. Translating that into a more institutional languagel’
by the construction of isomorphisms in Theorem 26T one gets exactly the construction of [41}:

L Any morphism (®. 3. cr): T = I’ yields a comorphism (.3 a/}: T/ — ITwhere 3., =

gz Mod'(ne ) and ok, = Sen'(ijg/): agr(xry for all T’ € [Sign'l.

2. Any comorphism (&' 3. o’} : ' = I yields a morphism (®.a..3): T — IT where for all

T e |Sign|l'Jc = Mod(ex): e Lac = o < :Senlec).
Example 29 The morphisms and comorphisius of Example 24 provide some good examples of the
duality discussed above:

L. The functor @ initem 5 of Example 24 from eqnational to first order signatures is left adjom
to the functor ¢ in item 1 of Example 24T and the morphism (item 1) and comorphism titem
5) between these institutions are dual in exactly the sense of the construction above.

The same holds for the morphism of item 3 of Example 24T from maly sorted equational logic
to unsorted equational logicl and the corresponding modification of the comorphism of item
2 of Example 24T from unsorted equational logic to mary sorted eqnational logic.

19

3. The same also holds for the morphism and comorphism of item 4 of Example 24 between
Horn clause logic and first order logic.

‘And there are of course many other examples of a similar kind. On the other handl the morphism

and comorphism of Example 25 are not dual in this sensel’despite the fact that their functors &

|

and @' are adjoint.

4.2 Kan Extensions of Institutions

Given a morphism from its signature categorylany institution can be translated in two distinet
canonical ways'given by the two Kan extensions associated to the signature category morphism.
The result below follows from Proposition 6I'plus Proposition 10I'that Trel is both complete and
cocomplete; as usuall’ eerything in this subsection holds for all close variants.

Proposition 30 Given a small category Sign and a functor ®: Sign — Sign’. any institution
I: Sign — Trel has both a right and a left Ran ectension along ®. and the functor Trel® has both
a right and a left adjoint.
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The Tinitation to sinadl citegories is msiznificant for practical paeposesUeven thoueh it is incon-

sistent with the asnad formudicions of signature vategories: tor exaunplel in forming the category of
canational signaturesUwe can restrict syimbols to those thit conld be expressed e ascnlor inoan
iddealized YIXT whih are conntable sets,

Let SCat denote the category of small categories[SZA'S the category of stitutions over sl
signature citegories and institntion morphismsC andeoSZVS the category of institintions over suall
signature categories and institntion comorphisms. Since SCat is both complete and cocomplete[
and sinee Theorenn 26 can he adapted to categories of small signatnresCwe have that SIS el
coSIN'S are hoth complete, Although we do not know whether ZV'S and c0Z 'S are cocomplete
the following in [54] for the case of Definition LU is sutficiemfor practical purposesD and holds for

any close variant of the institution collcept:

Theorem 31 STN'S and coSTN'S wre hoth cocomnplete.

5 Theoroidal Morphisms

This section considers generalizations of morphisms that involve mapping theories instead of just
signatires. As already mentionedl the “maps” of Meseguer [43] are comorphisms generalized in this
wayl'which we call “theoroidal.” We will consider completeness and cocompleteness of categories
with theoroidal (co)morphisms. We first define the theoroidal institution of an institutionl and
then theoroidal morphisins: both these concepts seem to be newland like all else in this sectionD

they zeneralize to all close variants of instifntions.

Definition 32 The theoroidal institution 1™ of an institution I = (Sign.Mod. Sen. =) is
(Th. Mod™. Sen" . .=""\[ where Th is the category of theories of ITMod™ is the extension of
Mod to theoriesT'Sen® is sign: SenCand ™ is sign: =T where sign: Th — Sign is the functor
which forgets the sentences of a theory. We may omit superscripts thl so that 1 appears as
(Th. Mod. Sen. ). [ ]
It follows that theories of 1™ are pairs ((Z. F1). Fy) where F1. Fy are sets of S-sentencesCand that
the models of ((S. Fy). Fy) in I are (E.(Fy U Fy))-models in 1. The following natural notions are
important for this section:

Definition 33 Given institutions I and I'Ta functor ®: Th — Th' is signature preserving iff
there is a functor ®°: Sign — Sign’ such that ®: sign’ = sign; &°. Similarlyl’ a functor & :Sign —
Th' is signature preserving iff there is a functor ®°: Sign — Sign’ such that &; sign’ = . W

The reader can check that ®° is unique if it exists. Now we can introduce the main concepts:

Definition 34 A theoroidal morphism (comorphism) from [ to I’ is a morphism {comorphism)
(P.13. ) from I* to I such that & is signature preserving. We let thIN'S and thcoIN'S denote
the categories of institutions with theoroidal morphisms and comorphismsI respectielyl and ve let

S hINS 5 INS and _%: theoIN'S ~ coIN'S denote the associated functors to ZNV'S and to
coZN ST respectiely. [ |
To be explicitlthe theoroidal morphism satisfaction condition says that for any [-theory (E. F)T
any model m € Mod(Z. F) and any formula f' € Sen’(Z')I" where £ = ()0

mEsas(f) i Ber(m) Ly T
while the theoroidal comorphism satisfaction condition states that for any I-theory (I, F)I any
model m" € Mod(X’, F') and any formula f € Sen(Z)I" where &= ¢°(Z)r
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[t is imediate that institntions with theorotdal morphisins {or comorphisins) torin a category. But
despite the simplicity of Detinition 340 it can be ditficult to deck the sitisfaction condition dirvectly:
howeverl'it fortunitely rednees to checking the condition for just the enupty theoriesU asshown in
the next two results:

Proposition 35 Giren institutions [ = (Sign. Mod. Sen. &) and 1" = (Sign’. Mod'. Sen’. E’). «
signature preserving functor & Th — Th'. a natural transformation 3: Mod = &: Mod’ and «
natural transformation o b Sen’ = Sen. then (b.3.40) is « theoroidal morphism if wnd only of

mEcaclf) i Foe(m) Eo f
or any empty theory (S 0% = Th. any model € Mod(E.0%) and any formula [/ < Sen'(T').
Py } .
where T = ().

Proof: The “only if” part follows from the definition of theoroidal morphism. Converselyl'let
(. F) be any theory in ThI letm € Mod(Z. F) and let f' € Sen’(X’). Then

m s as(f) iff Fcge(m) Ex f {by hyvpothesis)
iff Mod'(®(1))(3c.r(m)) ES ff (byv the naturallity of ;3
it 3cp(m)ES F {by the satisfaction condition in I’)
where 4 is the theory inclusion (Z.0%) — (XU F). O

Proposition 36 Giren institutions 1 = (Sign. Mod. Sen. =) and I' = (Sign’. Mod’. Sen'. ="). a
stgnuture preserving functor & Th — Th'. a natural transformation 3: ®: Mod' = Mod and u
natural transformation «: Sen = $:Sen’. then (b. 3. ) is a theorotdal comorphism if wnd only if
Bicpe (MY Ec fif M ES ac(f) .

Sfor any empty theory (.0%) = Th. any model m’ € Mod(®{Z.0*)) and any formula f = Sen{T}).
where &' = ®°(Z).

Proof: The “only if” part follows from the definition of theoroidal comorphism. Conversely[ let
(S.F) € ThI letm’ € Mod(Y'. F')T and letf € Sen(Z)T" where ®(ZF) = (X' F’). Then

Bie.ry(m') Ec fiff Bicpy(in') Ex Sen(d)(f) (Sen(:) is an identity)
iff Mod( )(ﬁ A (™) Ex f (by the satisfaction condition in 1**)
iff Bz.oe (Mod ( Nm")) Ex (by the naturality of 3)
iff Mod ®2))(m') B ax(f) (by hypothesis)
if m' =% Sen'(®(1)){ax(f)) (by the satisfaction condition in I'*?)
iff m’' }:S, as(f) (Sen(®(2)) is an identity)

where 1 is the theory inclusion (£.0%) < (I, F). a

Meseguer [43] defined'® his maps as in Proposition 360 but with the additional requirement
that ® be a-sensible! 'which seems not only naturall'but also technically desirable for proving
properties beyond the abovel' as in the folloving:

Conjecture 37 With appropriate restrictions on morphisms, such as sensibility. thSIN'S and
thcoSIN'S are complete and cocomplete.

YHowever, Meseguer used presentations instead of theories.
'!This essentially means that & is completely determined by its restriction to empty theories and a.
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5.1 Simple Thoroidal Morphisms

There is an important special case of theoroidal comorphism that often occurs i practiceealled

".\'ilnplc-"“ by Mesewner {»H][' thit maps sicnatures to theories instesed of theories to theories:

Definition 38 \ simple theoroidal morphism (comorphism) from I 1o I is a morphism
(comorphisn) (b3 o) trom T to U such that § is signatnre preserviug. [ ]

Notice that simple theoroidal (eo)morphisms rednce o ordinary (cojmorphisins where siguatures
map to theories with no axioms.  Also notice that the simple theoroidil morphism satistaction
condition says that for any signature & & Signlauy model € Mod(E) and any tormnla H e
Sen’(S')F where ¥ = (0

mEcac( it de(m) < f'r
while the satistiction condition for a simple theoroidal comorphism states that for any £ & Signll
any ' &€ Mod(T') and any formula f € Sen(S)T where ¥, = b (Z)I

Pe(m’) e f i ' B ac(f) .

If(P.Ja): I=Tisa stmple theoroidal morphism of institutionsD thenlet (B, 3. )™ be the
theoroidal morphism (B 3" ') from T to I defined as PMET. F) = (T (ac (F)U Ff}’) for

each theory (. F) € Thlwhere $(Z) = (2. FwS)Fi.e.I'ﬂ, is the set of I-sentences associated by
ECand where also 3% L (m) = Je(m) for each (E.F)-model mTand ayy is
(.F :

T

P to the I-signature
exactly a. We let the reader check that indeed 6™ is a signature preserving functor and thar 3%
and o are natural transformations. The satisfaction condition tollows by Proposition 35 using
that ,j{'i_i.o. is exactly Jc.

The most natural way to compose simple morphisms is as in Kleisli categoriesT that isT to
compose the first simple theoroidal morphism with the extension of the second to i theoroidal
morphism. More preciselyT given two simple morphisms of institutions (®1.31. ) from I; 1o I»
and (®2..9. «0) from Is to I3 their composition (P, 3. ap): (Pa. 3. an) is defined as the insti-
tution morphism (. F.ap): (o, 3o, )" from I to Hg”. Unfortunatelyl in order to prove the
associativity of morphism compositionlone has to show that ((Py. B1.ap)i (Ba. 3. a2)™)P equals
(B1.31. )" (B Fr.a2)™ I whik doesn’t seem to follow without further assumptions: at this timel’
we don’t know what the weakest requirements should be.

The situation is better for simple theoroidal comorphisms[’ because here ¢ anda go in the same
direction: indeedI" simple theoroidal comorphisms form a categorywithout any additional assump-
tions. If (®.3.a): I - I’ is a simple theoroidal comorphism of institutionsT" then let (& 3. a)t* be
the theoroidal comorphism (&, 3% at*) from I to I’ defined as QM. F) = (. (as(F)U Fas)')
for each theory (. F) € ThI where ®(Z) = (X, FQS)FB('Q_F)(m) = Bc(m) for each (. F)-model mT
and o' is exactly a. We let the reader check that indeed &' is a signature preserving functorl that
3™ is well defined (the satisfaction condition of (®.73.a) is needed)Tis a natural transformationl
and that and a'® is also a natural transformation. The satisfaction condition follows by Proposition
36 using that B{g_u.) is exactly Be.

Simple comorphisms can be composed as expected from Kleislilcomposing the first with the
extension of the secondI'i.e.I'given simple comorphisms (®1.5;. ;) from I} to Iy and (Ps. 3s. a2)
from [ to I3[ their composition (B.51.1); ($2. B2, ca) is defined to be (B1. 1. ay): (Pa. Ba. aag)t?
from [; to I*. To show assoctativityl one must show that ((Pr. 51y ); (Ba. o, c2) ) equals
(P1, 81 )t (B Ba. a2)* T whib after some calculation reduces to showing that

2We have not vet thought of a better name for this, but we do feel that one is needed.
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where DX = (X I'L;" aned G Moy = (M /'L;'JJ[' and where the List assertion follws trome 3. of

Proposition 13 and the tollowing:

Proposition 39 (f (Db 3. o) 5w comorphism (or a simple theoroudal co morphesm or w theoroidal
comorphism ) of wstidutions from Uto 1 amd F s woset of S-sentences of Tothen ao{F®) S ac(F)°

and as(F*)* = o F)°.

Proof: Let i/ = ac(F)0 where ¥ = &() in the case of comorplisins and £ = &7 (S in the
case of (simple) theoroidal comorphisms. Then ' o ac(F) it (hy the satistaction condition)
de(m’) = Ftf detn) = F*Off (by the satistaction conditiony m' Ev as(F*). Therefore

as( F) Eo ac(F*)[ whig proves the inclusion. Then the eqguality s inunediate. J

Example 40 We consider the relationship between FOLE and FOLD unsorted first order equational
logic with and without equalityl respectiely. First observe that there is a very simple and natural
morphisiu FOLE — FOLT where the functor ® forms the disjoint union of an FOLE signature

T with the symbol ~=": for notational conveniencel' we may denote this signature by £= and we
asstume that ~=" does not occur in any FOLE signaturel but is reserved for equality in ZOLE

sentences. Given an FOLE signature © and a FOLE Z-model MT we define 3<(M) to be the
®(Z)-model M= with the equality symbol interpreted as actual identity in M: it is easy to see that
3 is natwral. Given any FOL S=-sentence f'Tlet ac(f’) be just f'Thut with "=" now viewed as
the symbol nsed to form equational atoms. The satisfaction condition follows easily.

Althongh it is certainly very simple and natnralCthis morphism fails to capture the familiar
trick of axiomatizing equality when moving fromi POLE to FOLT as is needed to use a first order
theorem prover on the translations of FOLE sentences. However[ it is easy to extend it to a
simple theoroidal morphismIT thetheories of which contain axioms for equality['such as reflexivity
and svmuetry: let the signature map send © to () = (H(Z). T(T)) where ¢ is as above and
where T(Z) is a ®(Z)-theory of equality. But there is something strange about thisIbecanse the
satisfaction condition holds no matter what axioms we givelincluding none at all — unless some
of them are wrong.

On the other handl" toview this situation as a comorphismD it must be simple theoroidal with
equality axioms[ for the satisfaction condition to hold. We use W as above for the signature to
theory mapl and gien a FOL ¥(Z)-model M'T we define gc(M’) to be the reduct M'[<: it is easy
to see that 3 is natural. Alsolgiven an FOLE Z-sentence fllet ac(f) be f with “=" viewed as
the new predicate symbol in £=. For the satisfaction condition to holdI’ the axioms inT(Z) must
be strong enough to force the equality symbol to be interpreted as identity in models; this will rely

on a completeness theorem for equational logic. n

This example helps confirm our hypothesis that morphisms are usnally simpler and more natural
than comorphismsD’ but it alsoshows that morphisms may not encapsulate all the information we
want to have available; the theoroidal morphism is simple and naturalland it can include all the
information we want[but it is curious that this information is not necessary. The comorphism
is more complex because it needs a complete set of equality axioms over the given signature and
relies on a non-trivial completeness theorem. Howeverl' ve have also seen that the notion of simple
theoroidal morphism is rather complexIperhaps even problematic. Clearly there is more work to
be done in this area.

19



6 Forward Morphisms

Both institatiow morphisims and comorphisms have their syntactic and semantic components going
i opposite divections. Buat there are examples where it seems uatural for these go in the siune
divection. We will speak of “torward morphisms™ when both go in the forward direcrion. The
tollowing is the theoroidal version of this conceptDthough there is of conrse also i version at the

ordiniwy level; as usuadl cerything works tor all close variantsD at both these lewls:

Definition 41 Given institutions I = (Sign. Mod. Sen. =) and I’ = (Sign’. Mod’. Sen’. =) then
a theoroidal forward institution morphism[from I to I'T consists of

e b: Sign — Th(I') is siguatnre prescervingl

o .3: Mod = &:Mod’ is a natural transtormationl and

e «: Sen = ®:Sen’ is a natural transformationl’
such that for any signature & € Signl ay sentence f € Sen(Z) and any model € Mod(Z)[ the
satisfaction condition holds

m s fiff Fe(m) ’:{mg\ as(f).
: |

Example 42 There is a natural relationship between the two institutions'HEL; and EEL.T for
hidden equational logic that are described in Appendix C:

e since congrient operations are declared as sentencesl anv signature in the first instirution
translates to a specification in the second:
o any model 4 of (2.1 in che first institution gives a model of the secondD namely 4. EE):

e any (. [)-sentence is a T-sentence:

. . . r .

and we can see that for any (Z.[)-sentence f and any hidden T-algebra Al'we get 4 =¢ f iff
{4 EE) E=c f. All these say that there is an theoroidal forward morphism from HEL, to ZEL,. B

Of coursel’ w can also define forward theoroidal comorphisms in much the same wayl as vell as
simple theoroidal versionsTand these will work for all close variants. MoreoverDwe can ~untwist”
the definitions and results about twisted relationsIinstitutionsI’ morphisms and comorphisms to
obtain forward versions of all the main resultsT including completenessand cocompleteness of the
categories with institutions as objectsI” and with morphisms or comorphisis.

[t is easy to give corresponding definitions for backward notionsI” but this is unnecessar¥ because
a backward morphisim is just a forward comorphismI” and a bakward comorphism is just a forward
morphism; because of these relationshipsT it is not een necessary to introduce the terminology.

7 Semi-Natural Institution Morphisms and Comorphisms

The following weakens comorphisms by eliminating one of the naturality conditions; as usuall
everything in this section holds for all close variants.
Definition 43 Given institutions I = (Sign.Sen, Mod. =) and I’ = {Sign’.Sen’. Mod'.=")Ta
semi-natural institution comorphism ($.a.3): I — [’ consists of

e a functor &: Sign — Sign'T

e a family of functors 8 = {J=: Mod'(®#(Z)) - Mod(Z)}s¢isign [ and

e a natural transformation o: Sen = ¢;Sen'l
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stchothat for every X2 |Signf U’ = Mod tbi )l £ = Sent 21 the tollwing (co-)satisfaction
condition holds: . o, ‘
dotm’) o foatE ot L e actf) -
The point to note here is that 53 need ot be nadnead: this condition s not satistied i some
examplesCand s not needed to ensnre some signiticant properties. The tollowing shows that the
free superextension of a partial algebra to an order sovted algebra [26] gives vise to aseud-natnral
istitution comorphism.
Example 44 Another natural expansion of i partial algebra to asnpersorted algebrivis the free ex-
tensioul” whid freely adds supersorted terms for operations when they are nndetined. We formalize
this construction in the following.

For any supersorted signatnre (80 Z) and partial (8" S )-algebra AT lerdc (A be the smallest
S-sorted family such that:

Lo (st A))y = AL forall ¥ € 8"~ let us call the elements of (Jc(A")), the pure elements:

2. (A C 3<(A"), whenever 5" < s: and

3. malap.....n,) is in Je(d4’), and is called impure whenever any of a.....a, are impure or

AL tar. owy) is not definedl” whereo : «w — s is an operation with || = n and where 4] is
the partial map which interprets o: ' — 5" in A4’

Then Je{4’) can be given an (S. £)-algebra structure as follows:

Lot A glay. ) = ALlep ay) ifay.a, are all pure and AL {aq. ... a,) is definedD and
203t A ey, = Tyt ) if any of aj.....a, are impure or it A (ay. ...y ) is not
definedl

where 7 is as above. We call the (8. Z)-algebra 3<(A") the free superextension of A’. As shown
in 26| Jc can be organized as a functor Jc: PAlg(Z’) — OSAlg(T) which is left inverse left
adjoint to U=, When the signature is clear from the contextl we prefer to nuse the notation _°
instead of Je.

Although all these constrnctions are very naturall}3 is still not a natural traustormation. To see
this[ lete = (f.g): (51.81) = (52, £5) be a morphism of supersorted signaturesI” and let 4" be a
partial Sh-algebra. Then the free superextension of the p-reduct of A" involves operation symbols
in £y but the o-reduct of the free superextension of A’ involves operation symbols in E-so that
these two Ep-algebras cannot be equal. (However'they are isomorphic if o is injective.)
© Now the satisfaction condition for the semi-natural institution comorphism from GSEL” to PEL
can be formulated as follows: for every A’ € PAIg(X®) and (v.¢e) € Sen’(T)T

At lc (v.e) iff A o(rv.e).
This result is proved in [26].

Although the relationship between institutions is not quite so neat for the free superextension
construction as for the single error superextension of the previous subsectionI'the former is more
useful for many purposesD” because it preseres information abont why functions are undefined that
is very useful for doing proofsI" as well as for other purposes. n

The notion that we call semi-naturality was introduced in the context of membership equational
logic by Meseguer with his “general maps of institutions” [44]" wherex is not required to be naturall’
but only a signature indexed family of functionsI just as with3 in our Definition 43. At presentD it
is unclear how important semi-natural morphisms or comorphisms may bel’ or what are the general
properties of their institutions. For this reasonI’the fact that we do not know any examples of
semi-natural morphisms may be another point in favor of the morphism concept.
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8 Summary and Further Research

MathemativiansD and even fogicians! have not shown mueh interest in the theory of institutions[

perhaps hecanse their tendency towards Plvonisnn inelines them to believe that there is just one true

logic and model theory: it also doesn't mueh help that institntions use citegory theory extensively.

On the other hind U compnter scienistsI haing been foreibly impressed with the need to work
with i nnmber of ditferent logiesC often for ery practical reasonsU have written hundreds of papers
that apply or tucther develop the theory of institutions. Institntion morphisins become especially
relevant when mnltiple logical systems ueed to be nsed for the sate applicationl aud somehow
coordinated I as often occurs in complex systems where ditferailogies are nsed tor ditferent aspectsD
including functional requirementsCsafety and liveness propertiesTeconcurrency controll real time
responsel data ype designl and arditectural strneture,

We would like to emphasize certain points made in the body of this paper whichUCthough not
really newl do seem insufficienly appreciated in the current literature.

1. The notion of institution easily accomodates inference for logical systems: this was already

noted in the basic early paper on institutions [29]Cand this theme is further developed here

with onr notion of “close variant.” This fact makes it imnecessary to combine institutions

with otherl more famniliarl’ mdiinery to handle inference.

2. It is easy to add a notion of inclusion to a categoryl and hence to an institutionTand this
can greatly simplify many typical applications of institutionsIl sub as giving semantics to a
specification language. Tn every single practical example we know[ the category of signatures
has a natural and obvions notion of inclusionl so it is quire harmless toassume an inclusive
institntion when doing specification semantics over an arbitrary institution.

3. In many casesTinstitution morphisms in the original sense {29] provide more natural formu-
lations of important relationships between institutions than more receat notions.

1. Results about institutions can often be pulled out of a general categorical hatTafter a little
translationl generalization and/or massaging. IndeedD w are now often left feeling nnsatisfied
unless we have managed to do this for onr major results. The use of indexed categories in
Section 2.1 is one good examplel’ the dualiy of morphisms and comorphisms is anotherl” and
the constriction of theorvidal morphisms and comorphisms using the theoroidal institution
is a third.

In this paper we have tried to bring some additional order to the menagerie of morphisms
between institutionsI' starting with but not limited tol’ an improved taxonomy for the various
genres and speciesI’ bringing out some unexpected relationshipsl’ and some new propertiesOur new
nomenclature includes the forms co-I' semi-T" theoroidall’ and forwd[" among whid all combinations
are meaningfulland some special casesTsuch as simple. All of these could be adapted to various
institution-like formalisms but ve argue that there is no good reason to do so.

As is often the casel it seems to us that our researbd has opened far more questions than it has
closedl including the folloving:

e One general class of questions concerns properties of the various categories of institutionsT’
the most immediate of which is how complete and cocomplete they are. Another question isT’
which ones can be seen as Hattened indexed categories?

e One can also ask for each category of institutionsT which of its morphisms adinit Kan ex-
tensions? HoweverTone should also ask for interesting applications for translating a whole
logical system along a mapping of its syntax in this way.

[ 8]
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o To what extent do the vicious morphisms support the vense of fogies and theoreim provers in
the style suggested in [29] and fater e [8)7

o [ what extent do the varions morphisms support the “extra theory morphisms™ and ~Groth-
endieck constrnction”™ of Diaconesen in [15] and [20]0 vespectivly?

o Finallyl one migh wonder abont applving the machinery of this paper to the vapidly evolving
tield of coalgebra. For examplelwonld there be any vadne to coinstitntionsCor to dualizing

the waterial in Appendix D?
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A Partial Equational Logic

[u this appendix we preseat two diferent algebraic approaches to partialityCone based on partial
algebra and the other based on order sorted algebra: we also give the corresponding institutionsDd

following [26].

A.1 Partial Algebra

Given a many sorted signature AT apartial A-algebra 4 is just the same as an ordinary A-algebral’
except that the interpretations of the symbols from A in A may be partial functions instead of
total fnctions. Note that even constants can be partial - which means they are undefined. Given
a many sorted siguature Allet PAlga denote the category of all partial A-algebras with total
A-homomorphisims. Unfortnnatelvl there are multiple choices for morphismsTwith no clear way
to decide among them: for examplel homomorphisins might be indexed sets of parrial functions.
Howeverlwe choose to require them to be total.

Two classic references on partial algebral'by Horst Reichel [51] and Peter Burmeister [3]Tare
excellent sources for partial algebra and satisfaction. More recentlyl’ Ceriolil’ Mossakowski and
Reichel in their survey [9] argue in favor of partial satisfaction and against aspects of order sorted

equational logicl” particularly retracts.

A.2 Partial Satisfaction

One of the frustrations of partial algebra is the confusing plethora of definitions of satisfaction.
We only cousider satisfaction of unconditional equations by partial algebrasTover a many sorted
signature A. Perhaps the most common notionI called existential satisfaction!®*I'says that a
partial A-algebra A satisfies a A-equation (VX) t = t' iff for every assignment a: X — Al both
a(t) and a(t’) are definedl” and they are equal. This notion has the disadvantage that equations like
this inverse law
(Y N: Nat) Nx(1/N) =1

are not satisfied by the rational numbersT” because the left side is undefined for some alues where
the right side is not (namely N = 0). Existentially satisfied equations act as if they were totally
satisfledI” since they require eerything that they talk about to be defined. Therefore existential is
not in general reflexive. These considerations suggest that existential satisfaction is too strong.

Another notion[ called strong satisfaction[says that A satisfies (VX) ¢t = ¢’ iff for every
assignment a: X — ATf either a(t) or a(t') is definedlthen so is the otherTCand they are equal.

For examplel’ the equation

"3This name is a bit ironic, because many existentialist philosophers had serious doubts about even the possibility

of genuine satisfaction.
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s not existentially satistied by the rationalsU bat it is strongly satisticd D hecanse thewo sides e
detined for exactly the same assignments (naunely when Vo= 0 and A £ 0) and they are equal for
all these assigmments. Howeverl™ the iverse law above fails to be strongly satistied by the rationalsD
because the two sides are detined for ditferent values. Similaclyl the cquation

(/N M Nat) N M o= LN «0L/M))
is neither strongly nor existentially satistiod by the rationalsUhecanse the left side is detined for
sone assignments where the vight is not fniunely whenever .V = 0 or M = 0). These examnples
suggest that strong satisfaction is also too strong.

A thivd notion called weak satisfactionl is that A satisties (7.X) + = # iff for every assigument

a: Xo— AT both alt) and a(t') are detinedCthen they are equal. The difference between weak
and strong satisfaction is illustrated by the equation

(MM N Nat) M—-N=N-MT
which is weakly satisfied on the natural numbersD because both sides are defined iffV = M: howeverl’
it is neither strongly nor existentially satisfied by the naturals. Our intuition is that equations like
the above should not be trnel which implies that weak satisfaction is too weak. It is well known
and easy to check that given a partial A-algebra 4 and a A-equation el if4 existentially satisfies
e then A strongly satisties el and if4 strongly satisfies e then 4 weakly satisties e.

A.3 A Partial Equational Logic Institution

Let Sign be the category of many sorted signaturesI and letSen: Sign — Set be the functor that
gives for each signature A the set of all pairs (7. e) where 5 is a type of satisfactionl” i.e.[ an elemen
in the set {weak[ strongTeristenatial})Tand ¢ is a A-equation. Let PAlg: Sign - Cat” be
the functor that gives for any signature A the category of partial A-algebras. If 4 is a partial
A-algebra and e is a A-equationl” let us writed k= (v. e) whenever 4 partiallv v-satisfies . Then

Proposition 45 FEL = (Sign. Sen. PAlg. {k= 2}t azsign)) s an institution.

B Supersorted Order Sorted Equational Logic

.Goguen [26] shows how order sorted equational logic with retracts can effectively handle both
calculations and proofs for partial functions. There are two order sorted approaches to partialityl’
one using subsorts of definition and the other using error supersorts [26]. Here we concentrate on
the secondl'and show how the partial algebra concepts can be naturally adapted to (total) order
sorted algebra. As a consequencel'a new institution appears [26]Twhich we call supersorted order
sorted equational logicl or simplyCSEL".

B.1 Supersorted Signatures

Given an order sorted signature TT letOAlgy denote the category of all S-algebras with £-homo-
morphisms. Call an order sorted signature & with sort set S supersorted iff S is the disjoint union
of subsets §” and S” such that §’ and S” are isomorphic (as ordered sets)T with< the least ordering
on S including §’ and S7 (as ordered sets) such that s’ < s? whenever s € §' and s? € §” are
corresponding sort symbols. Call the sorts in §' pureland given a Z-algebra Alcall its elements



having sorts in S its pure elements. Alsol™ let us eadl a S-algebracd steict if cach of its operations
returns an nupnre vadue whenever tone or wore) of its arguments is impnre.

Let o morphisin of supersorted signaturesl from (S, £ to (55, o) U he a pair (f.q)
where fo05) — Sy s such that frsg) = S and f{s{] = [ fisp)) for each s = S{Cand where
g = et (S0 = (S0 g, g b s suele that gy () = g, o) whenever of = WIS = ¢
and 7 2 48, O (X0, Notice that f can be vestricted to sonree ST oand target SSTand let
[ 8 = S) denote such arestriction of £ onote that f(w) = f{u’) for every w = S;. It Sign’

denotes the supersorted signatures and their morphismsD then

Fact 46 Slgll 15 1t t'll,l‘l'_l/l)l"l/.

B.2 Super Satisfaction

We present order sorted versions for the various kinds of partial satisfaction presented in Section
Al Given a S-equation e = (VX)) ¢ = 'T w can make the following definitions: A existentially
supersatisfies e iff for every pure assignment u: X' — AT botha(t) and a(t') are pure and they are
equal. Similarlyl' 4 strongly supersatisfies e iff for every pure assignment a: X — ATif either
a(t) or a{t') are purel’ then both are pure and they are equal. And finally[' 4 weakly supersatisfies
e iff for every pure assignment «: X — AL ifa{t) and a(t’) are both purel’ then they are equal.

B.3 The Supersorted Order Sorted Equational Logic Institution

Let Sen’: Sign’ — Set denote the functor that maps a supersorted signature to the set of all pairs
v.¢) where v isatype of supersatisfaction (eI an elemen in the set {weakTstrongleristenatial})
and e is a standard equation over that signatnre quantified with variables of non-error sorts'. Let
OSAlg: Sign’ — Cat” bhe the usnal functor that gives for any supersorted signature ¥ the
category of order sorted Z-algebras. If 4 is an order sorted Z-algebra and e is a S-equationT let us

write A < (v.e) when A v-satisfies e. Then we have

Fact 47 OSEL’ = (Sign’.Sen". OSAlg. {=c}c.igpn) is an institution.

B.4 Forgetting the Errors
Let (S.Z) = (S’ ¥') for any supersorted signature (S. £)T and note that 6. £) is indeed a signature
whenever (S.Z) is a supersorted signaturel because the operations in £’ only involve sorts in S'.
Now if (f.g9): (S1.Z1) — (S2.%3) is a morphism of supersorted signatures'define (f,g)’ to be
the pair (f'.g’) where ¢’ is the family {g/, ,: (Z))w o — (Z5) frunpisny } with g, () = gus(0).
Then we have
Fact 48 _°: Sign’ — Sign is a functor.

We now define a natural transformation a: Sen’ = _’;Sen as follows: for any supersorted
signature (S. ) and any (S, Z)-equation (v, e)T letas(y. e) be the (§'. ¥')-equation obtained from
(7. ¢) replacing each operation 0: w — s by 0: w' — s’. Then indeed

> . .
Fact 49 a: Sen' = _°;Sen is a natural transformation.

Fact 50 Given a supersorted signature (S.%5). then Us: OSAIlg(Z) — PAIg(Z’) is a functor.
Moreover, U: OSAlg = _*;PAlg is a natural transformation.

“For Sen’ to be a functor, we need the rather technical result that the equations quantified by non-error variables
are mapped to equations quantified by non-error sorts. However, this is a consequence of the fact that non-error sorts

are mapped to non-error sorts.
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C  Two Hidden Equational Logic Institutions
There are two rather ditlerent witys to present hidden fogic as ancinstitntion in two inferesting ways[
depending on whether the decluation of an ope
ficst approached this issne in [32]. A thorongh exposition

ration to he beliawioral is considered part of the
sigratnrel or as aseparate sentence: we
of hidden algebra may be fonnd [55].
The tivst institutionD denotedHEEL | T follwvs the institntion of Lidden algebrainitially presented
in [25]Cthe institution of observational logic in [35]Caud the coberent hidden algebra approach in
(L6C17]Cwhile the secondCwhich we stimply call HEL, Cseems wore prowmising for fature research,
Onr approach also avoids the infinitary logic used in observational logic. Only the fixed-data case
is investigated herel bt w hope to extend it to the loose-data case soon (see [33] for more on the

terminology of hidden logic). We fix a data W-algebra D.

C.1 The First Institution

The institution HEL, is built as follows:
Signatures: The category Sign has hidden signatures over a fixed data algebra D as objects.
A morphisim of hidden signatures ¢: ([[[.£;) — (C2.X2) is the identity on the visible signature
Wl takes hidden sorts to hidden sortsCand if a behavioral operation - in T'» has an argument
sort in &(H) then there is some behavioral operation d; in [} such that §» = o). Sign is
indeed a categorvland the composition of two hidden signature morphisms is another. IndeedD lot
i (D201 = (T3, S5 and let a3 be an operation in I3 having an argument sort in (o: o, Hii
Then d3 has an argument sort in ©(H2)T so there is an operationds in T with 03 = L(d2). Also dy
has an argiment sort in o{ H,)T so there is somedy in [y with dy = &(d1). Therefore §3 = (o vitop
te.I'édi iy is also a morphism of hidden signatures.
Sentences: Given a hidden signature (. Z)T let Sen(I.T) he the set of all C-equations.  If
$: (I'.Z1) = ([2.53) is a hidden signature morphismI then Sen{®) is the function taking a
Tiequation e = (YX) =t if ¢t = Fle oty =t to the Ss-equation

ole) = (YX) S(t) = (t') if (t1) = (1)), ... 6(ty) = Sl)T
where X" is {r: ¢(s) [ v : 5 € X}. Then Sen: Sign — Set is indeed a functor.
Models: Given a hidden signature (T. Z)llet Mod(I.E) be the category of hidden C-algebras
and their morphisms. If ¢: (T'1.E1) = ([5.Z5) is a hidden signature morphismI’ thenMod/ 2 is
the usual reduct functorl’_f,. Unlike [1['35]Cete.Cthis allows models where not all operations are
congruent.

Satisfaction Relation: behavioral satisfactionT Lell=r o= ng:

Theorem 51 Satisfaction Condition: Civen ¢: (I'1.Zy) = (T'2.%2) a hidden signature mor-
phism. d = (VX) t = ¢ if t, = 1.ty =t a Ty-equation. and A a hidden Eo-algebra. then

AES ple) iff AL, ED .

Proof: See [32I 55]. a
C.2 The Second Institution

Our second institution views the declaration of a behavioral operation as a new kind of sentencel’

rather than part of a hidden signature. The notion of model also changes'adding an equivalence
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relation as i [L This s uataeal for modern sottware cugineeringl” sinee langnages lik Java provide
classes with an operation denoted equals which serves this purpose. Seutenees in [1] are pairs
(e AV where Ais suset of teems (prety imneh like acobasis over the derived signature) U whih are
sitisticd by (AL~} it {4 ~) satisties ¢ as in onr case below (actually ¢ is a first-order formnla in
their framework) and ~C =4, Fix a dataalgebra DF and proceed as follwvs:

Signatures: The category Sign has hidden signatures over D as objectsUC with its wmorphisins
o Ep = Lo the identity on the visible signature W and taking hidden sorts to hidden sorts.

Sentences: Given a hidden signature TClet Sen(S) be the set of all T-equations nnioned with
oIt g Zy = Zoois a hidden signatnre morphisiI then Sen(s) is the function taking a

_—

Ci-equation ¢ = (7X) + = 1" if tp =t =, to the To-equation gle) = (7X) off) =
S AE ot ) = ot oo, ) = (), ) T where X' is the set {r : o(s) | £ s € U}l and taking
TSl Sy = s toola) s @(s)) . pls,) — d(s). Then Sen: Sign — Set is indeed a functor.

Models: Given a hidden signature L'let Mod(Z) be the category of pairs (4. ~) where A is a
hidden Z-algebra and ~ is an equivalence relation on A which is identity on visible sorts[ with
morphisms f: (d.~) = (4. ~') with f: 4 = 4’ a Z-homomorphism such that f(~) C ~".

If : £ = Ts is a hidden signature morphismI then Mod(4)T often denoted _|,Tis detined as

—_2

(A~ o= (d1,.~"5) on objectsI where 47, is the ordinary many sorted algebra reduct and
(~To)s =~ for all sorts s of T Tand as fi,: (4. ~)[,— (A".~")[, on morphisms. Notice that
indeed f7, (~1,) € ~"I.T soMod is well defined.

Satisfaction Relation: A T-model (4.~} satisfies a conditional T-equation (7Xj ¢t =1 if 1| =
Bty =1, iff for each B: X — AT i04) ~ 00410 .B(t,) ~ 8(t),) then 8(t) ~ 8(t'). Also (4. ~)

satisfies a T-sentence v € T iff ¥ is congruent for ~.

Theorem 52 Satisfaction Condition: Let ¢: &) — E5 be a morphism of hidden signatures. let
e be a Ty-sentence and let (4. ~) be a model of 5. Then (A.~) Ex, dle) iff (4.~)7, =, e

Proof:  See [320 55]. O

This institution justifies our belief that asserting an operation behavioral is a kind of sentencel’
not a kind of syntactic declaration as in the “extended hidden signatures™ of [17]'?. Coinduction
now appears in the following elegant guise:
Proposition 53 Given a hidden subsignature I of . a set of L-equations E and a hidden -
‘algebra A, then

o (A ~) Ex E.T implies (A,Eg) Ec E.T.

e (A=) <.

s AELE ff (A.=)EcE if (A =L)EcET.

D A More Categorical Institution for Algebra

This section develops universal algebra in a much more abstract categorical language than is usualll
with satisfaction interpreted as injectivity; we show that this forms an institution. Interestinglyl’
the satisfaction condition becomes “almost equivalent™ to the definition of adjoint functorI’thus
strengthening our belief in the essentiality of the original definition of institution in [29]. We
assume the reader familiar with basic notions of factorization systems [36 48].

'3However, the most recent version of [21] treats coherence assertions as sentences.
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Detinition 54 [t A ix w category and Cis o class of morphisms in AU then an object 0 is C-
- 2 in C and any morphism £ U — D there are some

injective iff lor any morphisia 0
morphisis g2 3 = 0 snch that f = o0y

Definition 535 It /& . MLy and {(Ex. Mgy are factorization systems for categories A and BT re-

spectivelvl then a tictorF 0 A = B is called E-preserving iff F(&.y) < &g

We begin with the observation that satistaction of equations in the framework of universal
algebra is equivadent to injectivity. Let us consider that 4 is the category of universal or many
sorted Sealzebras over a (many sorted) signature $. Each equation (7.X) + = generates a
congrnenee relation on T=(.X) (the term algebra over variables in X)T which implicitly gives a
surjective morphism e Te(.X) — o, [t can be readily seen that an algebra D satisfies (vX)t =t
if and only if it is {e}-injective. Converselyl each surjective morphism e of free algebra source
generates an infinite set E of equations over variables in that free algebral’ namely all pairs in
its kernel. It can also be readily seen that an algebra is {e}-injective if and only if it satisfies
all equations in E. Therefore[satisfaction of equations and C-injectivityl' where C contains only
surjective morphisms with free sourcesI' are equinlent concepts in the framework of nniversal and/or
many sorted algebra.

It can be relatively easily shown [53] thatD' gien a set of surjective morphisms of not necessarily
free sonrcesTC-injectivity is actually equivalent with C-injectivityl whereC’ can be obtained from
C and contains only some special morphisms of free sourcel intuitively representing conditional
equations. The institution that follows is therefore taking into consideration conditional eqnations.

Definition 56 If C is 2 class of morphisms and Q is a class of objects in ATlthen let €7 be the
class of all objects in A which are C-injectiveland let QF be the class of all morphisms in C such

that each object in Q is Q% -injectivel’ n

We will often say that the objects in € “satisfy” the “formulas™ in C.

Fact 57 Given a cluss of morphisms C in A. the pair of operators (J7. 51 is « Galots connection
hetween classes of morphisms in C and classes of objects in A.

We can now introduce the following more or less standard notion:

Definition 58 Given a class C of morphisms and Q a class of objects in A let Q% be the class of
-objects (Qz)*. Then Q is C-injectively definable iff Q@ = Q. |

We next show that the natural injectivity-based logic informally described above can be orga-
nized as an institution:
Signatures: Let Sign be the category having small categories admitting factorization systems as
objects and E-preserving left adjoint functors as morphisms.
Sentences: Let Sen: Sign — Set be defined as Sen(A) = €. Notice that Sen is indeed well
defined.
Models: Let Mod: Sign — Cat“? be defined as Mod(A) = A and Mod(F) is a right adjoint
of F. Suppose that the right adjoints are chosen such that Mod is a functor.

Theorem 59 Satisfaction Condition: Given an &-preserving left adjoint functor F: B — A
of U: A — B, an object A € |A| and a morphism e € g, then A = F(e) if U(A) Fs e.
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Proof:  The proof tollows inunediately from properties of adjoint functorsD and so w leave it s
an exercise. The following dingrams may help visualize this proof:

X a v Fix) —2 Ey
!

~

JARN L £ \ o
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